MA 3046 - Matrix Analysis Laboratory Number 2 The Singular Value Decomposition (SVD)

There are three "classic" matrix factorizations in linear algebra, the **LU** decomposition (which you should have seen in MA1043), the **QR** decomposition (which we shall see later in this course), and the Singular Value decomposition (SVD). In the SVD, the matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ is decomposed (factored):

$$\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^H$$

where U and V are unitary, and Σ is diagonal. The diagonal elements of Σ are

$$\sigma_i = \sqrt{\lambda_i}$$

where, by convention $\sigma_1 \geq \sigma_2 \geq \cdots$, and the λ_i are the (assured non-negative) eigenvalues of $\mathbf{A}^H \mathbf{A}$. The columns of \mathbf{V} are called the *right singular vectors*, and are also the eigenvectors of $\mathbf{A}^H \mathbf{A}$. The columns of \mathbf{U} , which are the so-called *left singular vectors* of \mathbf{A} , are related to the columns of \mathbf{V} by

$$\mathbf{u}^{(i)} = \frac{1}{\sigma_i} \mathbf{A} \, \mathbf{v}^{(i)} \quad , \quad \sigma_i \neq 0 \quad .$$

The related, so-called Reduced SVD of A is

$$\mathbf{A} = \hat{\mathbf{U}}\hat{\boldsymbol{\Sigma}} \; \hat{\mathbf{V}}^H$$

where $\hat{\Sigma}$ is an $r \times r$ diagonal matrix of only the **non-zero** singular values, $\hat{\mathbf{U}}$ is $m \times r$, and $\hat{\mathbf{V}}$ is $n \times r$. (Both $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$ have orthonormal columns. However, in the reduced SVD, this only means $\hat{\mathbf{U}}^H \hat{\mathbf{U}} = \mathbf{I}$ and $\hat{\mathbf{V}}^H \hat{\mathbf{V}} = \mathbf{I}$. Because they are not square, however, we can generally expect that $\hat{\mathbf{U}} \hat{\mathbf{U}}^H \neq \mathbf{I}$ and $\hat{\mathbf{V}} \hat{\mathbf{V}}^H \neq \mathbf{I}$.)

The SVD plays a major role in both theoretical and practical matrix analysis and computation. For example, the rank of \mathbf{A} is precisely the number of non-zero singular values. Moreover, in terms of the Euclidean norm:

$$\|\mathbf{A}\|_{2} = \sigma_{1} = \|\mathbf{A}\mathbf{v}^{(1)}\|_{2}$$

Moreover, we can write the (reduced) SVD in block matrix form as:

$$\mathbf{A} = \begin{bmatrix} \mathbf{u}^{(1)} \vdots \mathbf{u}^{(2)} \vdots \dots \vdots \mathbf{u}^{(r)} \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \sigma_r \end{bmatrix} \begin{bmatrix} \mathbf{v}^{(1)}^H \\ \mathbf{v}^{(2)}^H \\ \vdots \\ \mathbf{v}^{(r)}^H \end{bmatrix}$$

$$= \left[\sigma_1 \mathbf{u}^{(1)} \vdots \sigma_2 \mathbf{u}^{(2)} \vdots \dots \vdots \sigma_r \mathbf{u}^{(r)} \right] \begin{bmatrix} \mathbf{v}^{(1)}^H \\ \mathbf{v}^{(2)}^H \\ \vdots \\ \mathbf{v}^{(r)}^H \end{bmatrix}$$

But this last expression can be viewed as simply the product of a $1 \times r$ block row vector by a $r \times 1$ column vector, i.e. a block inner product. This produces

$$\mathbf{A} = \sigma_1 \mathbf{u}^{(1)} \mathbf{v}^{(1)^H} + \sigma_2 \mathbf{u}^{(2)} \mathbf{v}^{(2)^H} + \dots + \sigma_r \mathbf{u}^{(r)} \mathbf{v}^{(r)^H} = \sum_{i=1}^r \sigma_i \mathbf{u}^{(i)} \mathbf{v}^{(I)^H}$$

which is equivalent to expressing \mathbf{A} as a sum of rank one matrices, each of which has smaller Euclidean norm (i.e. σ_i) than all of its predecessors. Viewed slightly differently, this decomposes \mathbf{A} into a sum of rank one matrices of decreasing energy.

This last observation allows us to use the singular values to create approximations to the original matrix. Specifically, if $\nu \leq r$

$$\mathbf{A}^{(\nu)} = \begin{bmatrix} \mathbf{u}^{(1)} & \vdots & \dots & \vdots & \mathbf{u}^{(\nu)} \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{\nu} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{(1)}^T \\ \vdots & \vdots \\ \mathbf{v}^{(\nu)}^T \end{bmatrix} = \sum_{i=1}^{\nu} \sigma_i \mathbf{u}^{(i)} \mathbf{v}^{(i)^H}$$

represents a so-called rank ν approximation to **A**. Moreover, we can show that the Euclidean norm of the remaining terms, i.e.

$$\left\| \sum_{i=\nu+1}^{r} \sigma_{i} \mathbf{u}^{(i)} \mathbf{v}^{(i)H} \right\| = \left\| \mathbf{A} - \mathbf{A}^{(\nu)} \right\|_{2} = \sigma_{k+1}$$

i.e. the next largest singular value. Approximations built on this idea are commonly used in signal and image processing, data compression, etc.

Name:	

MA 3046 - Matrix Analysis Laboratory Number 2 The Singular Value Decomposition (SVD)

1. Link to the laboratory web page and download the file:

svdstuff.mat

to your laboratory directory.

2. Start MATLAB and load the data in $\mathbf{svdstuff.mat}.$ Specifically examine the 6×4 matrix:

3. Using MATLAB's \mathbf{help} capability, study the syntax of the $\mathbf{eig}($) command until you feel comfortable executing it. Then give the command

$$[\ \mathbf{veig} \ , \mathbf{d} \] = \mathbf{eig}(\ \mathbf{a}' * \mathbf{a})$$

and record both the eigenvalues for $\mathbf{a}' * \mathbf{a}$ (where \mathbf{a} is the matrix created in part 2):

and the associated eigenvectors

$$\mathbf{veig} =$$

4. Using MATLAB's sqrt() command, find the square roots of the eigenvalues found in part 3 above

5. Determine whether or not the eivenvectors (columns of veig) found in part 3 above are or are not orthogonal?
Why should this either have or have not been expected?
6. Using MATLAB's \mathbf{help} capability, study the syntax of the \mathbf{svd} () command until you feel comfortable executing it. Then give the command
$\operatorname{svd}(\ \mathbf{a}\)$ where \mathbf{a} is the matrix from part 2, and record the results:
How do these values agree with theory when compared with those from part 5 above.
What, if anything, can you infer about the properties of a from these values?

7. Next, give the command

$$[\mathbf{u}, \mathbf{s}, \mathbf{v}] = \mathbf{svd}(\mathbf{a})$$

 $[\ u\ , s\ , v\]\ =\ svd(\ a\)$ where a is the matrix from part 2, and record the results:

- 8. Verify that, for the matrices \mathbf{u} , \mathbf{s} and \mathbf{v} found in part 7:
 - (i) $\mathbf{a} = \mathbf{u} * \mathbf{s} * \mathbf{v}'$ to some reasonable order.
 - (ii) $\mathbf{u}' * \mathbf{u} = \mathbf{I}$ to some reasonable order.
 - (iii) $\mathbf{v}' * \mathbf{v} = \mathbf{I}$ to some reasonable order.

9. Compare the eigenvectors (**veig**) of $\mathbf{a}' * \mathbf{a}$ as found in part 3 with the left singular vectors (**v**) of \mathbf{a} as determined in part 7 above. Explain any differences.

11. Give the MATLAB command

and record the result.

Why, or why not, should you have expected this value?

12. Compute

apar =
$$u(:,1:3)*s(1:3,1:3)*v(:,1:3)'$$

$${f ans}=$$

What is this calculation actually doing? Compare this result to the original matrix **a** from part 2 and its singular values as computed in part 6. Why, or why not, should the degree to which they compare have been expected?